
Generalized GETSTARS
is NP-Complete

Jack Eisenmann

1. Definition of Generalized GETSTARS
The standard version of GETSTARS involves controlling a ghost to collect ten stars in an 
enclosed 10 by 10 board. The board may also contain three 2 by 2 block barriers through which 
the ghost may not pass. Barriers must have at least one block of space between each other. 
The ghost is only able to move in one orthogonal direction at a time.

In this document, we will use a generalized version of GETSTARS with these modifications:
• The board is unbounded
• There may be any number of stars
• There may be any number of barriers

We will say that the GETSTARS language consists of ⟨B, t⟩ such that:
• B is a board containing star positions, barrier positions, and initial player position
• t is a non-negative integer
• It is possible for the player to collect all stars in B by making t or fewer moves

2. Overview of proof
We will prove that GETSTARS is NP-complete in the following way:
1. Show that GETSTARS is NP-hard by reduction from planar HAMPATH (Hamiltonian path 

problem)
2. Show that GETSTARS is in NP
3. Conclude that GETSTARS is NP-complete because it is NP-hard and in NP

3. GETSTARS is NP-hard
Planar HAMPATH (Hamiltonian path problem) is NP-complete[1]. Therefore if we can poly-time 
reduce planar HAMPATH to GETSTARS, we can conclude that GETSTARS is NP-hard.

HAMPATH is the language of ⟨G, a, b⟩ such that there exists a Hamiltonian path in graph G 
between the two given vertices a and b. A hamiltonian path is a path which visits every vertex of 
the graph exactly once.

Planar HAMPATH adds the restriction that the graph must be able to be drawn on a 2D surface 
so that no two edges cross.



We want to find some poly-time computable function f such that x ∈ planar HAMPATH iff f(x) ∈ 
GETSTARS.

Our reduction f from planar HAMPATH to GETSTARS will involve the following steps:
1. Convert each vertex in the HAMPATH graph into a super vertex composed of stars
2. Convert each edge in the HAMPATH graph into a super edge in GETSTARS
3. Do not add any barriers
4. Start the player two spaces away from the start super vertex
5. Create a super vertex of degree one connected to the end vertex b of the HAMPATH graph
6. Set t equal to [number of stars * 2 + (number of super vertices - 1) * 2]

A super vertex will contain channels with a checkerboard structure. The diagram below shows 
two channels with two different pathways through them. Blue squares represent starting 
positions. Red squares represent stars. Black lines represent paths.

�

In both paths, every star is visited. The distance travelled between each star is always 2 spaces. 
In the top channel, the end position is on the other side of the channel from the start position. In 
the bottom channel, the end position is next to the start position.



It is possible for a channel to bend and still maintain both types of paths:

�

�



A supervertex may contain junctions of 3 channels with the following structure:

�

Given any start channel, it is possible to completely traverse all stars (2 spaces at a time) and 
exit the end of either other channel. There are six possible cases for this.



Case 1: West → East → South

�
Case 2: West → South → East

�



Case 3: South → East → West

�

Case 4: South → West → East

�



Case 5: East → South → West

�

Case 6: East → West → South

�

We can include many junctions in a super vertex. Provided that there are no cycles, it will 
always be possible to traverse all stars in the super vertex (2 spaces at a time) while travelling 
from one endpoint to another. This allows a super vertex to have an arbitrarily large number of 
interconnected channels. 



A super edge consists of channels of two super vertices which meet within exactly 4 spaces of 
each other:

�

In the top case, the path traverses across the super edge from one super vertex to another. In 
the bottom case, the path does not traverse across the super edge.

Generating the super graph is a poly-time operation because, in general, drawing any planar 
graph is a poly-time operation[2]. Adding the extra super vertex after the end node in HAMPATH 
is also a poly-time operation. Therefore the reduction f from planar HAMPATH to GETSTARS 
may be performed in polynomial time.

Suppose that x ∈ planar HAMPATH. This means there is a path in G from a to b which visits 
every vertex in G exactly once. This means there exists a corresponding path through B which 
visits every super vertex exactly once. This means that the number of spaces moved is equal to 
[number of stars * 2 + (number of super vertices - 1) * 2], because there will be [number of 
super vertices - 1] transitions across super edges. Therefore f(x) ∈ GETSTARS.

Suppose that f(x) ∈ GETSTARS. This means that all of the stars in B may be collected in 
[number of stars * 2 + (number of super vertices - 1) * 2] moves or fewer. The number of moves 
required to collect stars within the same supervertex is [number of stars * 2]. The number of 
moves for each super edge traversed is 4. Therefore the number of super edges traversed must 
be [number of super vertices - 1]. This means that each super vertex was only visited once. The 
end super vertex must be the extra super vertex added after b, because there is only one edge 
connected to the extra super vertex. Therefore there exists a corresponding path in G which is a 
Hamiltonian path between a and b. Therefore x ∈ planar HAMPATH.

Therefore GETSTARS is NP-hard.



4. GETSTARS is in NP
We may employ the following non-deterministic algorithm to solve GETSTARS:
1. Non-deterministically choose an ordering of vertices to visit
2. Find the total number of moves required to traverse the vertices in the given order
3. If the number of moves is less than or equal to t, accept. Otherwise reject.

This algorithm will accept iff there exists a way to collect all stars in t moves or fewer.

Without barriers, it is trivial to find the distance between any two stars. When barriers are 
included, the algorithm must find an optimal path around them.

In order to find an optimal path around barriers, we will employ Dijkstra's algorithm. We will 
create a vertex for the start star and end star. In addition, we will create 12 vertices around 
every barrier. The barrier blocks shown below are purple, and the vertices are yellow:

�

In total the number of possible edges to add is polynomial in the number of barriers. We will only 
add edges whose orthogonal paths do not intersect with barriers. The weight of each edge will 
be the number of spaces required to move from one vertex to another.

The runtime of Dijkstra is polynomial in the number of edges and vertices[3]. The number of 
edges and vertices in this case are both polynomial in the number of barriers, so the path 
finding step will require polynomial time.

Therefore GETSTARS may be solved in non-deterministic polynomial time.

5. GETSTARS is NP-complete
Because GETSTARS is NP-hard and is in NP, GETSTARS is NP-complete. 



6. Bibliography
[1] Garey, M. R.; Johnson, D. S.; Stockmeyer, L. (1974), "Some simplified NP-complete 
problems", Proc. 6th ACM Symposium on Theory of Computing (STOC '74), pp. 47–63, doi:
10.1145/800119.803884.

[2] Martinet, Lucie (2010), "Drawing Planar Graphs" http://perso.ens-lyon.fr/eric.thierry/
Graphes2010/lucie-martinet.pdf

[3] Fredman, Michael Lawrence; Tarjan, Robert E. (1984). Fibonacci heaps and their uses in 
improved network optimization algorithms. 25th Annual Symposium on Foundations of 
Computer Science. IEEE. pp. 338–346. doi:10.1109/SFCS.1984.715934.


